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Developmental stress has been shown to affect adult flight performance in birds, with both negative and
positive effects reported in the literature. Previous studies have used developmental manipulations that
had substantial effects on patterns of growth. They have also examined mean levels of flight performance
per individual, rather than investigating how developmental stress might alter trade-offs between
different components of flight performance. We recorded multiple components of escape flight perfor-
mance in 20 adult European starlings previously subjected to a manipulation likely to have altered levels
of developmental stress. Siblings had been cross-fostered to nests where they were either slightly larger
(advantaged treatment) or slightly smaller (disadvantaged treatment) than their competitors. The
manipulation had no detectable effect on growth. However, developmental treatment affected perfor-
mance in escape flights a year later by strengthening the trade-offs between different flight parameters.
Disadvantaged birds faced a steeper trade-off between take-off speed and take-off angle, and a steeper
trade-off between take-off angle and total time in flight, than advantaged birds. The results suggest that
even subtle early life adversity that has no obvious effect on growth or size can leave a lasting legacy in
the form of constraints on locomotor performance later in life.
© 2015 The Authors. Published on behalf of The Association for the Study of Animal Behaviour by Elsevier
Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
The abilities to take flight rapidly and manoeuvre accurately are
vital to the survival of small birds (Cresswell, 1993). Variation in
these abilities is determined by such factors as muscular power
relative to mass, wing size and feather condition (Kullberg,
Fransson, & Jakobsson, 1996; Swaddle, Witter, Cuthill, Budden, &
McCowen, 1996; Verspoor, Love, Rowland, Chin, & Williams,
2007). Across many taxa, it has been shown that developmental
stress can produce alterations in morphological and physiological
parameters that persist into adulthood (e.g. Criscuolo, Monaghan,
Nasir, & Metcalfe, 2008; Tschirren, Rutstein, Postma, Mariette, &
Griffith, 2009; Verhulst, Holveck, & Riebel, 2006), and adult loco-
motor performance can be affected by conditions experienced early
in life (Alvarez & Metcalfe, 2005; �Alvarez & Metcalfe, 2007).

In birds, several studies have detected negative consequences of
developmental stress for flight performance, generally finding
these to become more marked with age (European starlings:
Verspoor et al., 2007; zebra finches, Taeniopygia guttata: Criscuolo
et al., 2011; mourning doves, Zenaida macroura: Miller, 2011). This
is an example of a ‘silver spoon’ effect (Monaghan, 2008), whereby
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benign early conditions carry over into improved phenotypic status
later in life. In contrast, two studies have shown that maternal
stress or increased exposure to maternal stress hormones can lead
to increasedwing size and improved flight performance at maturity
(great tits, Parus major: Coslovsky & Richner, 2011; European star-
lings: Chin et al., 2009). This would be an example of adaptive
developmental plasticity, where an early stressor triggers an
evolved anticipatory response to adverse situations later in life, and
hence improved performance in some capacities. Both of the
studies reporting positive effects used prehatching stressors
(maternal predator exposure and embryonic corticosterone expo-
sure), whereas all the studies reporting negative effects used
posthatching stressors. Thus, pre- and post-hatching stress expo-
sures may play different roles, with prehatching exposure more
able to induce anticipatory adaptive plasticity, and posthatching
stress more likely to impose constraints on adult phenotypic
quality.

All of the developmental stress manipulations studied so far in
the context of flight performance have affected growth in obvious
ways, either altering the developmental trajectories of body and
wing size, or prolonging the growth period. Thus it is possible that
effects of developmental stress on flight performance are wholly
due to consequent differences in overall size or catch-up growth.
f Animal Behaviour by Elsevier Ltd. This is an open access article under the CC BY
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We recently developed a subtle early life manipulation in the Eu-
ropean starling in which siblings were cross-fostered on day 2 of
life to nests in which they were either slightly larger than the other
chicks (the advantaged treatment) or slightly smaller (the disad-
vantaged treatment). The size differences were of the order of 5 g
against an average day 2 weight of 13 g, and thus similar in
magnitude to the difference between first- and last-hatching chicks
in a natural nest. Previous studies using similar manipulations
suggest that the disadvantaged birds would have had to beg more
in order to be fed, and would have been jostled to more peripheral
positions in the chick mass (Cotton, Wright, & Kacelnik, 2013). Our
manipulation appeared to affect developmental stress, since telo-
mere attrition, an acknowledged biomarker of developmental
stress exposure, was greater in the disadvantaged than the
advantaged group (Nettle et al., 2015). However, the manipulation
had no detectable impact on the timing of weight gain, or weight or
wing length at fledging. Thus, if there were any consequences of
developmental treatment for adult flight performance in our birds,
this would suggest that the impact of developmental stress on
flight performance is not wholly due to variation in the pattern of
overall growth.

Previous studies in this area have reduced flight performance
to a single index, and often used only a single flight or the mean
of several flights to represent each bird. Although convenient,
this strategy masks the fact that there are several components to
flight performance, and there may be trade-offs between them.
Within the domain of take-off ability, birds face a trade-off be-
tween take-off speed and take-off angle, with one of these pa-
rameters being defended at the expense of the other when
capacity is limited (Kullberg et al., 1996; Lind, Jakobsson, &
Kullberg, 2010; Witter, Cuthill, & Bonser, 1994). Since develop-
mental stress could influence muscular or metabolic capacity, it
might affect the resolution or the severity of this trade-off. Once
airborne, there may be a trade-off between flight speed and ac-
curacy of a manoeuvre (Brilot, Asher, & Bateson, 2009). Again,
developmental stress could affect the strength or resolution of
the trade-off.

In this study, then, we measured key components of flight
performance (take-off speed, take-off angle, time to reach a desti-
nation and accuracy of airborne manoeuvres) in European starlings
from the cohort that had experienced the early life manipulation
described above, recording several flights per bird wherever
possible. This allowed us to examine impacts of early disadvantage
on both average flight performance parameters and the trade-offs
between different components of flight performance for each in-
dividual bird.
Aerial maze 
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Figure 1. The experimental arena. (a) Side view showing perch locations, measuring
arcs and aerial maze. (b) Plan view indicating positions of the three cameras.
METHODS

Subjects and Housing

Subjects were 26 European starlings (14 male:12 female, 14:12
from the two developmental treatments), taken from the wild as
nestlings. When not in experimental procedures, birds were
housed in groups of up to 20 in two large indoor aviaries
(215 � 340 cm and 220 cm high; ca. 18 �C; 40% humidity; 15:9 h
light:dark cycle), provided with environmental enrichment
(foraging substrate, water baths, multilevel rope perches, cover)
and clean drinking water, and fed ad libitum on domestic chick
crumbs supplemented with cat biscuits (Royal Canin Ltd. ‘Fit’),
dried insect food (Orlux insect pat�ee), live mealworms, Tenebrio
molitor, and fruit. The birds were maintained in nonbreeding con-
dition at all times by the use of an unchanging light/dark cycle of
long days.
Developmental Manipulation

The developmental manipulation is described in full elsewhere
(Nettle et al., 2015). Briefly, on posthatching day 2, quartets of
siblings were removed from the natal nest and cross-fostered to
two different host nests: the two in the advantaged (ADV) condi-
tion to a nest in which they were (mean þ SD) 4.9 þ 1.9 g larger
than all other nestlings, and the two in the disadvantaged (DIS)
condition to a nest in which they were 4.8 þ 2.2 g smaller than all
other nestlings. On posthatching day 12, they were removed to the
laboratory where the natal families were reconstituted and chicks
were hand-reared to independence, after which they lived in
common aviaries. The manipulation led to no significant differ-
ences by treatment in body weight at any age (measured at days 3,
4, 7, 12, 15, 18, 21 and 24), although the ADV birds remained
significantly heavier than their nest competitors at day 12, while
the DIS birds remained significantly smaller than their nest com-
petitors. Wing lengths did not differ significantly by treatment at
day 12 or after fledging on day 24. The current experiment used a
sample of the cohort, with individuals from eight natal families. The
birds were 10e13 months old at the time of this experiment.

Apparatus

We designed an experimental arena to measure both take-off
performance and aerial manoeuvrability within the same trial.
The arena was housed in an indoor room maintained at approxi-
mately 18 �C and 40% humidity on a 15:9 h light:dark cycle. No
people or other birds were present in the room during the trials;
the experimenter observed from outside the room using a video
monitor. The arena (0.7 � 3 m and 2 m high; Fig.1) was constructed
frommetal mesh, with two perches, one 10 cm from the floor at the
near end, and the other 27 cm from the ceiling at the far end, the
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latter surrounded by cardboard for cover. During trials, a feeder
containing live mealworms was placed close to the near perch. Also
adjacent to the near perchwas an electronic doorbell that produced
the startle stimulus (the sound of a dog barking). The bird came to
feed at the feeder and, during feeding, we triggered the doorbell,
causing the bird to escape to the far, high perch. On the wall
adjacent to the near perch were seven arcs marked in 15 cm in-
crements from the perch. One metre from the near perch, the bird
encountered an aerial maze consisting of 13 weighted strings,
25 cm apart, hanging from the ceiling in staggered rows of two or
three. Three digital video cameras gave full coverage of the entire
flight: one from the far perch (frame rate 30 fps), and two from the
side of the arena, one covering its whole length (75 fps) and one
covering the take-off area (50 fps).

Procedure

On the afternoon of day 0, a bird was caught from the aviary in
the dark, weighed using a digital balance (to the nearest 0.1 g), and
measured using a wing rule (wing length to the nearest mm,
average of two sides). Birds were assessed for feather damage such
as broken primaries. Only four birds were judged to show any sign
of damage; including damage in the analysis had no effect and
damage is not considered further in this paper.

The bird was then released into the arena for a habituation
phase starting at 1600 hours. The aerial mazewas not lowered until
1700 hours and, during the habituation phase, the arena was
enriched with extra intermediate perches, a water bath and food
(chick crumbs and Orlux). To counteract the negative effects of
isolation and encourage the bird to come to feed, a stuffed model
conspecific was placed on the outside of the arena close to the
feeder at the near perch. The flight trials began at approximately
0930 hours on day 1. The arenawas cleared of enrichments, and the
standard food in the feeder at the near perch was replaced with
more highly valued mealworms. The experimenter waited until the
bird came to feed, and allowed at least one beak dip into the food
before triggering the startle stimulus.

After an escape flight, the startle stimulus was not triggered
again for at least 5 min. After this interval, further escape flights
were triggered when the bird came to feed. We were primarily
interested in escape flights triggered by the startle stimulus, since
these most closely represent the escape of a bird from a predator
attack, and differ from routine flights (Veasey, Metcalfe,& Houston,
1998). However, if a bird had completed three escape flights, we
allowed it to feed and captured a routine (nonstartled) flight from
the perch. After this, if the bird continued to come down to feed, we
captured up to twomore escape flights. The sequence of escape and
routine flights was not identical for every bird due to unplanned
routine flights during the trials. At 1400 hours on day 1, the bird
was removed from the arena if it had completed at least two escape
flights (if it had completed one, the session was prolonged until
1500 hours). Otherwise, it returned to the habituation phase until
0930 on day 2, when the procedure was repeated. At the end of day
2, the bird was returned to the aviary regardless of how many
flights had been completed.

Measurement of Flight Performance

All flight performance measures were assessed from video blind
to developmental treatment. For take-off speed and take-off angle,
videos were paused 0.2 s after the bird's feet left the near perch.
Using the software package ImageJ (Schneider, Rasband, & Eliceiri,
2012) and the known distances of the arcs, we calculated speed to
that point (cm/s) and angle of ascent (degrees). We estimated total
time of flight by counting the frames between the bird's feet leaving
the near perch and arriving at the far perch, and using the camera
frame rate to convert to milliseconds. Manoeuvrability was
assessed by the number of strings hit. This was scored indepen-
dently by two experimenters, and proved difficult to score accu-
rately due to spontaneous movement of strings caused by airflow.
There were discrepancies between the experimenters in 43% of
cases; these were resolved by rescoring those videos together.

Statistical Analysis

Data were analysed using linear mixed models (package ‘nlme’)
in R (R Core Development Team, 2013), incorporating nested
random effects for bird (where appropriate) and natal family to
account for the structure within the data. We had a number of
covariates potentially relevant to flight performance (see below),
and were interested in whether developmental treatment
explained additional variation above and beyond these covariates.
We thus employed a model selection approach based on the
adjusted Akaike information criterion, AICc (Symonds & Moussalli,
2010). We first identified the best-fitting (lowest AICc) model
involving covariates only. Where several such models differed by
less than 2 units of AICc, we retained them all as a set of best
models. We then added developmental treatment and appropriate
interactions to the best model or set of best models. Evidence for
the importance of developmental treatment would take the form of
reductions in AICc (that is, negative values of DAICc). Where mul-
tiple models are being considered, parameter estimates reported
below are from the weighted average of all models under consid-
eration, using R package ‘AICcmodavg’. The Appendix provides ta-
bles of AICc values for all the models discussed.

For physical comparisons of weight and wing length, the only
candidate covariate was sex. For the flight performance variables,
the basic set of candidate covariates was weight, wing length and
(because of the possibility of habituation) escape number. To
investigate trade-offs between different components of flight per-
formance, we adopted the following strategy. First, we modelled
take-off speed, using the basic set of covariates listed above. We
then modelled take-off angle, using the basic set of covariates plus
take-off speed (owing to the possible trade-off between take-off
speed and take-off angle). Next, we modelled strings hit, using
the basic set of covariates plus take-off speed and take-off angle
(since manoeuvrability in the maze may have been affected by
speed and angle of entry). Finally, we modelled time in flight, using
the basic set of covariates plus all the other three flight perfor-
mance measures. When considering developmental treatment, a
main effect would demonstrate that developmental treatment
altered the average level of that flight performance measure,
whereas an interaction between developmental treatment and
another component of flight performance would suggest that
developmental treatment altered trade-offs between flight per-
formance components.

Ethical Note

Birds were taken from the wild under Natural England licence
20121066 and the research was completed under Home Office
licence PPL60/4073, with approval of the local ethical review
committee at Newcastle University. At the time of writing, the birds
either are alive at Newcastle University or have been rehomed to
outdoor aviaries.

The developmental manipulation involved cross-fostering. One
chick of 48 that we cross-fostered in 2013 died between cross-
fostering and the next morning; this is no greater than the ex-
pected rate of mortality this early in life. All other cross-fostered
chicks gained weight between removal from their own nest and
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the next morning, suggesting rapid recovery from transport and
acceptance in host nests. The manipulation may have increased
developmental stress in the DIS group. However, the level of size
discrepancy created is within the natural range observed in starling
nests. Thus, the level of developmental stress is likely to have been
within the naturally experienced range. Our manipulation was also
as likely to improve a chick's position within its nest as to make it
worse. The mean weights for the DIS group birds were not signif-
icantly lower than those of the ADV group at any weighing point;
nor was the variance greater (Nettle et al., 2015). A total of two DIS
birds and three ADV birds died before day 12; this is in line with
rates of mortality in undisturbed nests in our starling colony.

The flight experiment is likely to have caused short-term stress
due to social isolation, the unfamiliar environment and the startle
stimulus. Birds were returned to their aviary within 72 h of being
taken to the experimental arena. None showed any subsequent
adverse effects. The maximum duration of the period during which
birds were prevented from feeding by the experiment was 5.5 h.

RESULTS

The raw data are available as Supplementary Material. We
successfully captured all flight performance measures for 76 escape
flights from 20 birds (range 1e5 per bird, multiple flights from 18
birds). The six birds yielding no data consisted of five that did not
come down to the near perch within the allotted time, and one for
which we failed to capture video from all cameras. These six were
drawn evenly from both developmental treatments (3:3), but all six
were female. In addition to the escape flights, we recorded a routine
flight from 11 birds. We report the analysis of the data from the
escape flights only; including the routine flights does not alter any
of the conclusions. There was considerable variation in how many
minutes elapsed in the test sessions before the bird first came down
to the near perch, but this variation was unrelated to develop-
mental treatment (means þ SD: ADV 140.67 þ 167.43 min; DIS
157.78 þ 163.17 min; adding developmental treatment to an
intercept-only model predicting logged minutes to come down:
DAICc ¼ 2.97; B(DIS) ¼ 0.25, 95% confidence interval, CI �1.30 to
1.79).

Physical Measurements

Males were heavier than females on day 0 of the experiment
(males 84.03 þ 5.65 g, females 76.43 þ 5.43 g). Adding sex to an
intercept-only model predicting weight improved model fit
(Table A1; B(Male) ¼ 7.32, 95% CI 3.70e10.93). Further adding
developmental treatment did not improve model fit (Table A1;
B(DIS) ¼ �0.51, 95% CI �3.90 to 2.88), and body weights were very
similar between treatment groups (DIS 82.03 þ 6.71 g, ADV
81.09 þ 6.73 g). Likewise, males had longer wings than females
(males 130.46 þ 3.81 mm, females 125.21 þ 5.30 mm; B(Male) ¼
3.76, 95% CI 1.14e6.38), but wing length was similar across treat-
ment groups (DIS 129.50 þ 4.42, ADV 128.12 þ 5.39), and there was
no support for adding developmental treatment to the model
containing sex as a predictor of wing length (Table A2; B(DIS) ¼
0.65, 95% CI �1.81 to 3.10).

Take-off Speed

We first modelled take-off speed. Four covariate-only models
had AICc values within 2 units of one another (Table A3) and these
were retained as a best set. Three of the four best models contained
weight, and provide evidence overall for a negative effect of weight
on take-off speed (B ¼ �4.03, 95% CI �7.32 to �0.74). Adding
developmental treatment to the models increased AICc in all cases
(Table A3), and the parameter estimate for developmental treat-
ment was close to zero (B(DIS) ¼ �2.85, 95% CI �39.27 to 33.57).
Thus, there was no support for take-off speed being affected by
developmental treatment (between-bird mean þ SD: ADV
415.42 þ 60.04 cm/s, DIS 411.27 þ 38.39 cm/s; Fig. 2).

Take-off Angle

We next modelled take-off angle, including take-off speed as an
additional predictor to account for possible trade-offs. Two
covariates-only models were retained, the first containing weight
and take-off speed and a lower-weighted model containing weight,
take-off speed and wing length (Table A4). Across these two
models, the effect of weight on take-off angle was negative
(B ¼ �1.02, 95% CI �1.74 to �0.30), and the effect of take-off speed
was also negative (B ¼ �0.06, 95% CI �0.11 to �0.01), suggesting a
trade-off between take-off speed and take-off angle. Adding
developmental treatment and its interaction with take-off speed to
these models improved model fit in both cases (Table A4). DIS birds
did tend to take off at slightly shallower angles (ADV 51.05 þ 12.58
degrees, DIS 44.97 þ 6.73 degrees; B(DIS) ¼ �6.76, 95% CI�14.46 to
0.95; Fig. 2). However, the models containing both developmental
treatment and its interaction with take-off speed fitted substan-
tially better than those containing themain effect of developmental
treatment alone (Table A4), suggesting that the effects of devel-
opmental treatment were operating via changes in the trade-off
between take-off speed and take-off angle.

To explore the interaction further, for each bird for whom we
hadmore than one escape flight, we fitted a linear regressionmodel
of take-off angle on take-off speed (see Fig. 3). For the DIS birds,
these slopes were uniformly negative (median �0.18). For the ADV
birds, the slopes were not so consistently or strongly negative
(median �0.04).

Strings Hit

For strings hit, a total of four models were retained in the best
set of covariate-only models (Table A5). However, the best-
supported of these was the intercept-only model, and the other
three had no parameters in common. Thus, there was no strong
support for any of the covariates contributing substantially to
explaining variation in the number of strings hit. The mean number
of strings hit was similar across the two developmental treatments
(ADV 3.26 þ 0.55, DIS 3.31 þ 0.43; Fig. 2), and adding develop-
mental treatment to the models increased AICc in every case
(Table A5; B(DIS) ¼ 0.03, 95% �0.44 to 0.49).

Time of Flight

For time of flight, five best-fitting covariate-only models were
retained (Table A6). All five contained take-off angle and take-off
speed, and four of the five, including the two most heavily
weighted, contained number of strings hit. The parameter estimate
for take-off speed was negative, meaning flights with faster take-
offs took less time overall (B ¼ �1.27, 95% CI �2.02 to �0.53). The
effect of take-off angle was positive: steeper take-off angles made
flights longer (B ¼ 8.83, 95% CI 5.77e11.89). This was due to the
steeper angles increasing the distance travelled. The most direct
path from perch to perch involved a take-off angle of approximately
31�, and the steeper angles involved the birds reaching the ceiling
well short of the far perch and having to change direction. The ef-
fect of strings hit tended to be positive, suggesting birds took longer
when they had hit more strings (B ¼ 24.75, 95% CI �5.46 to 54.95).
Adding developmental treatment and its interaction with take-off
angle to the models slightly improved fit in all cases (Table A6).
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Models containing the developmental treatment by take-off angle
interaction were in all cases superior to those containing the main
effect of developmental treatment alone (Table A6). There was no
support for models containing any additional interactions (data not
shown).

To visualize the interaction between developmental treatment
and take-off angle, we again calculated slopes of time of flight
against take-off angle for individual birds. The slopes for the DIS
birds were more strongly positive (median 0.02) than those for the
ADV birds (median 0; Fig. 4). Because of this, ADV birds were able to
maintain very similar times of flight to DIS birds (ADV 1.15 þ 0.23 s,
DIS 1.16 þ 0.26 s; Fig. 2), despite tending to take off at steeper
angles.

DISCUSSION

By measuring multiple components of flight performance
separately, and retaining information from multiple flights from
the same bird, wewere able to confirm the presence of trade-offs in
flight performance. For a bird to increase the steepness of its take-
off angle, it had to reduce its take-off speed, in line with previous
findings from both starlings and other passerines (Kullberg et al.,
1996; Lind et al., 2010; Witter et al., 1994). Increasing the steep-
ness of the take-off angle also increased the total time in flight. The
reason for this was that the total distance travelled became greater,
with birds setting off at a steep angle reaching the ceiling of the
arena well before the far perch, and having to change direction to
fly horizontally along under the ceiling. The only trade-off of which
we found no evidence was that between speed and accuracy of
manoeuvre in the aerial maze (Brilot et al., 2009); neither faster
take-off speed nor shorter overall time of flight was associated with
more strings hit.

The effects of developmental treatment on mean flight perfor-
mance were not marked. Of the four flight performance measures,
only one, take-off angle, gave any indication of differing between
the two developmental treatment groups, with developmentally
disadvantaged birds tending to take off at shallower angles than
their advantaged siblings. However, closer analysis revealed that
developmental stress intensified the trade-offs that birds faced
between different components of flight performance. Birds from
the disadvantaged treatment had on average to sacrifice more take-
off speed for every degree of take-off angle gained, and likewise
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suffered a greater decrement in time to reach their destination for
every additional degree of take-off angle, than the advantaged in-
dividuals. Thus, advantaged birds were able to reach their desti-
nation just as quickly as disadvantaged birds, despite having taken
off at steeper angles. The disadvantaged birds appeared to sacrifice
take-off angle in order to defend take-off speed, a pattern that has
also been observedwith artificially weighted starlings (Witter et al.,
1994).

Birds from the two developmental treatments did not differ
significantly inweight or wing length at the time of testing. Thus, it
seems likely that the developmental manipulation had caused
subtle physiological differences that were still persistent in the
adult birds. Although we did not measure stress hormones directly
during our developmental manipulation, the accelerated telomere
attrition shown by the disadvantaged birds suggests they experi-
enced greater levels of physiological stress (Nettle et al., 2015).
Stress hormone exposure during development affects muscle
structure and function in a number of ways (Dong et al., 2007). It is
possible that increased stress caused by our manipulation con-
strained the development of muscular capacity, meaning that the
disadvantaged birds were not able to produce the muscular force to
mitigate the negative effects of taking off steeply on speed to the
same extent as the advantaged birds. Alternatively, developmental
stress may have increased the physiological cost of flying with a
given velocity, leading disadvantaged birds to economize on
steepness. It has been shown in budgerigars, Melopsittacus undu-
latus, that high-quality diet in adulthood reduces the cost of flight
in terms of oxidative damage (Larcombe et al., 2008), and benign
developmental circumstances could have a similar effect.

Our results are in accord with previous studies that have found
‘silver spoon’ effects: lasting negative effects of posthatching
developmental stress on adult flight performance in birds
(Criscuolo et al., 2011; Miller, 2011; Verspoor et al., 2007). We found
no evidence for any adaptive improvement of flight performance by
developmental stress, as found by two studies that manipulated
prehatching stress exposure (Chin et al., 2009; Coslovsky& Richner,
2011). Thus, our study fits into the general pattern that post-
hatching developmental stress has negative effects on flight per-
formance, whereas prehatching developmental stress may instead
induce adaptive plasticity.

The observed pattern of trade-offs between different compo-
nents of flight performance, and the effects of developmental his-
tory on the strength of those trade-offs, illustrates the importance
of analysing data from multiple flights from the same individuals,
rather than taking a single flight or a mean level of flight perfor-
mance per bird. It also illustrates the value of analysing each
component of flight performance separately for many purposes,
rather than reducing flight performance to a single index. The only
one of our measures not to show any interpretable relationship to
our predictors was the number of strings hit in the aerial maze. This
measure proved difficult to score accurately from the videos, and
our inter-rater agreement was poor. Thus, the lack of pattern may
reflect imprecision of our measurement. Although we have suc-
cessfully used a similar method before (Brilot et al., 2009), more
reliable methods for assessing manoeuvrability might be provided
by using solid obstacles and marking birds' wings with ink
(Swaddle et al., 1996).

There is widespread evidence from birds that developmental
stress can have a negative impact on survival and on fitness
(Lindstr€om, 1999). These effects must be mediated through some
aspects of the individual's performance or capacity. The present
results are striking since the developmental manipulation was so
subtle, altering only the slight initial weight differences between
the focal chicks and their competitors, and yet its influence was
detectable in adulthood. The results demonstrate that small
developmental stressors can have lasting physiological impacts
even without obviously affecting growth patterns or adult size.
Subtle differences in the circumstances of early development could
thus have far-reaching implications for adult fitness and behaviour;
there may be both direct fitness impacts due to reduced perfor-
mance and compensatory behavioural changes such as risk avoid-
ance and increased vigilance as a response of the individual to its
own state (Lind & Cresswell, 2005).
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Table A6
Models for time in flight

Model k AICc D AICc Weight

Intercept only 4 1020.79 e e

Best covariate-only models
AngleþSpeedþHitsþEscape number 8 985.58 0.00a 0.28
AngleþSpeedþHits 7 985.60 0.02a 0.28
AngleþSpeed 6 986.13 0.55a 0.21
AngleþSpeedþHitsþWeight 8 987.16 1.58a 0.13
AngleþSpeedþHitsþEscape numberþWeight 9 987.48 1.90a 0.11
Models with developmental treatment and interaction
AngleþSpeedþHitsþEscape numberþTreatmentþTreatment*Angle 10 983.89 �1.69b 0.33
AngleþSpeedþHitsþTreatmentþTreatment*Angle 9 984.45 �1.15b 0.25
AngleþSpeedþTreatmentþTreatment*Angle 8 985.12 �1.01b 0.18
AngleþSpeedþHitsþEscape numberþWeightþTreatmentþTreatment*Angle 11 986.00 �1.48b 0.12
AngleþSpeedþHitsþWeightþTreatmentþTreatment*Angle 10 986.04 �1.44b 0.11
Models with developmental treatment main effect only
AngleþSpeedþHitsþTreatment 8 985.73 1.84c 0.27
AngleþSpeedþHitsþEscape numberþTreatment 9 986.00 2.11c 0.23
AngleþSpeedþHitsþWeightþTreatment 9 986.40 0.36c 0.19
AngleþSpeedþTreatment 7 986.47 1.35c 0.18
AngleþSpeedþHitsþEscape numberþWeightþTreatment 10 987.16 1.16c 0.13

a Relative to best covariate-only model.
b Relative to corresponding covariate-only model.
c Relative to corresponding model with main effect and interaction.

Table A5
Models for strings hit

Model k AICc D AICc Weight

Best covariate-only models
Intercept only 4 227.89 0.00a 0.36
Weight 5 228.69 0.81a 0.24
Escape number 5 228.79 0.90a 0.23
Wing length 5 229.40 1.51a 0.17
Models with developmental treatment
Treatment 5 230.16 2.27b 0.37
WeightþTreatment 6 231.04 3.15b 0.24
Escape numberþTreatment 6 231.15 3.26b 0.23
Wing lengthþTreatment 6 231.75 3.86b 0.17

a Relative to best model, which is intercept-only.
b Relative to corresponding covariate-only model.
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